Matthew Montierth

https://mattmontierth.quarto.pub/

in https://www.linkedin.com/in/matthew-montierth/

Education

Anticipated 2024

Ph.D., Baylor College of Medicine Quantitative and Computational Biosciences.
 B.S., Brigham Young University Genetics and Biotechnology.

Minor: Statistics full academic scholarship

Conference Presentations

2019

Posters

2024	"Evaluating prognostic utility of TmiS for Gleason 7 and Gleason 8 prostate cancer" American Asso- ciation for Cancer Research
2023	"TmiS: A Prognostic Indicator for Prostate Cancer Survival Based on Total Tumor Cell miRNA Lev- els" <i>Leading Edge Cancer Symposium</i>
2023	"DeMixMir: deconvolution of microRNA sequencing data from heterogeneous tumor samples" <i>American Association for Cancer Research</i>
2022	"Estimating total tumor-specific microRNA content in human tissues using computational decon- volution" <i>American Society of Human Genetics</i>
2022	"Integration of tumor-specific miRNA and mRNA using computational deconvolution methods" <i>Research in Computational Molecular Biology</i>
2018	"The impact of multiple sclerosis disease status and subtype on hematologic profile" American Society of Microbiologists
2018	"Contribution of known risk variants to multiple sclerosis age of onset" American Society of Micro- biologists
2017	"Effect of genetic variants associated with uric acid on multiple sclerosis: a mendelian randomization

Research Publications

study" American Society of Microbiologists

Journal Articles

- Cermakova, K., Tao, L., Dejmek, M., Sala, M., Montierth, M. D., Chan, Y. S., ... Hoffman, D. et al. (2024). Reactivation of the g1 enhancer landscape underlies core circuitry addiction to swi/snf. *Nucleic acids research*, *52*(1), 4–21.
- ² Jiang, Y., Montierth, M. D., Yu, K., Ji, S., Guo, S., Tran, Q., ... Li, R. et al. (2024). Pan-cancer subclonal mutation analysis of 7,827 tumors predicts clinical outcome. *bioRxiv*, 2024–07.
- 3 Cermakova, K., Tao, L., Dejmek, M., Sala, M., **Montierth**, **M. D.**, Chan, Y. S., ... Hodges, H. C. (2023). Reactivation of the g1 enhancer landscape underlies core circuitry addiction to swi/snf. *Nucleic Acids Research, in press. I* doi:10.1093/nar/gkad1081

- Wang, J. R., Montierth, M. D., Xu, L., Goswami, M., Zhao, X., Cote, G., ... Busaidy, N. L. et al. (2022). Impact of somatic mutations on survival outcomes in patients with anaplastic thyroid carcinoma. JCO Precision Oncology, 6, e2100504.
- Jiang, Y., Yu, K., Ji, S., Shin, S. J., Cao, S., Montierth, M. D., ... Wang, W. (2021). CliP: Subclonal 6 architecture reconstruction of cancer cells in DNA sequencing data using a penalized likelihood model. BioRXiv (preprint). @ doi:10.1101/2021.03.31.437383
 - Miller, J. M., Beales, J. T., Montierth, M. D., Briggs, F. B., Frodsham, S. F., & Davis, M. F. (2021). The impact of multiple sclerosis disease status and subtype on hematological profile. International Journal of Environmental Research and Public Health, 18(6), 3318. 🔗 doi:10.3390/ijerph18063318
- 8 Johnson, D. K., Reynolds, K. M., Poole, B. D., Montierth, M. D., Todd, V. M., Barnado, A., & Davis, M. F. (2021). Contribution of viral infection to risk for cancer in systemic lupus erythematosus and multiple sclerosis. *PLOS ONE*, 16(1), e0243150. *O* doi:10.1371/journal.pone.0243150
 - Gao, F., Pan, X., Dodd-Eaton, E. B., Recio, C. V., Montierth, M. D., Bojadzieva, J., ... Wang, W. (2020). A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with li-fraumeni syndrome. Genome Research, 30(8), 1170–1180. 🔗 doi:10.1101/gr.249599.119

Books and Chapters

Ji, S., Montierth, M. D., & Wang, W. (2022). MuSE: A novel approach to mutation calling with sample-specific error modeling. In Variant calling (pp. 21–27). Springer.

Research and Employment History

2019 – present	◊ PhD student, Wang Lab - MD Anderson Cancer Center, Houston, TX.
	• Applied bayesian risk prediction methods to identify <i>de novo</i> BRCA mutations in pedigree cohort
	• Integrated ATACseq data to pan-cancer analysis for more than 5,000 samples from The Cancer Genome Atlas
	• Refined, documented, and implemented somatic mutation calling pipeline to char- acterize landscape of mutations in pan-cancer studies
	• Characterized subclonality of mutations and relationship with clinical outcomes in pan-cancer study of over 7,000 samples and 32 cancer types
	 Developed DeMixMir, a computational tool for deconvolution of miRNA expres- sion from mixed tumor samples
	• Analyzed tumor evolutionary dynamics in largest ever subclonal reconstruction study across 7,708 patient samples.
2023 – present	◊ Research mentor Indigo Research
	• Taught principles of scientific inquiry to pre-collegiate researchers
	• Guided literature search, hypothesis generation, and study design
	• Directed learning of statistical and coding skills to scientific analysis

Research and Employment History (continued)

2018 – 2019	◊ Bioinformatics Associate Genentech, South San Francisco, CA.
	• Lead initiative to download and harmonize public GWAS data to common standard for subsequent analysis
	• Performed meta-analysis combining in-house data with public data to identify novel ocular disease variants
	• Collaborated with software development team to create exploratory portal for clinical trial data
2017 – 2018	◊ Life Sciences Tutor Brigham Young University, Provo, UT.
	• On-site tutor in life sciences student help center.
	• Tutored students for all core life sciences courses from 100-300 level.
	• Held test preparation lectures bi-weekly for genetics, molecular biology, and phys- ical and developmental biology courses
2016 – 2019	◊ Research assistant Davis Lab - Brigham Young University, Provo, UT.
	• Performed mendelian randomization studies to examine the relationship between potential causal factors and multiple sclerosis
	• Identified variants influencing multiple sclerosis comorbidities via genome wide association scan
	• Developed random forest multiple sclerosis subtype classification model using blood panel test data
	• Managed peers and mentored fellow students' ongoing projects as senior lab man- ager
Skills	

English: native speaker, Spanish: Fluent
R, Python, Unix, LATEX
Mysql, DuckDB
ggplot, Shiny, plotly, Observable JS, Seaborn, Matplotlib, Adobe Illustrator
Snakemake
Mutation calling, RNAseq analysis, deconvolution, single cell analysis, ATACse analysis, subclonal reconstruction, GWAS, mendelian randomization
Statistical machine learning, survival analysis, feature selection

Affiliations and Training

Additional training

2023	\diamond	NCI Spring School on Algorithmic Cancer Biology, National Cancer Institute (NCI).
2022	\diamond	Summer short program, Computational Genomics Summer Institute (CGSI).
2022	\diamond	Advanced Statistics for Data Science Specialization, Coursera.

Affiliations and Training (continued)

Professional Affiliations

2017-2022 American Society of Human Genetics
2022-2024 American Association for Cancer Research

Volunteering and Service

Full-time Volunteer - Church of Jesus Christ of Latter-Day Saints

- ◊ Taught English as Second Language (ESL) course to immigrant and refugee parents as school program with Spring Branch ISD
- Participated in city-wide flood recovery, translating for city services and American Red Cross
- Volunteered as translator for Saving Smiles initiative, educating children from low-income schools about dental hygiene

Vice president - BYU Genetics club

- ◊ Organized social activities for 200+ club members
- ♦ Planned career and networking events with industry professionals in healthcare and biotech

References

Available on Request